Supersymmetric t J Gaudin models and KZ equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 359381
(http://iopscience.iop.org/0305-4470/35/44/308)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 02/06/2010 at 10:35

Please note that terms and conditions apply.

Supersymmetric $\boldsymbol{t} \boldsymbol{-} \boldsymbol{J}$ Gaudin models and KZ equations

Mark D Gould ${ }^{1}$, Yao-Zhong Zhang ${ }^{1}$ and Shao-You Zhao ${ }^{2}$
${ }^{1}$ Center of Mathematical Physics, Department of Mathematics, University of Queensland, Brisbane 4072, Australia
${ }^{2}$ Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China

Received 18 February 2002
Published 22 October 2002
Online at stacks.iop.org/JPhysA/35/9381

Abstract

Supersymmetric $t-J$ Gaudin models with open boundary conditions are investigated by means of the algebraic Bethe ansatz method. Off-shell Bethe ansatz equations of the boundary Gaudin systems are derived, and used to construct and solve the KZ equations associated with $s l(2 \mid 1)^{(1)}$ superalgebra.

PACS numbers: $02.30 . \mathrm{Ik}, 11.30 . \mathrm{Pb}, 74.20 .-2$

1. Introduction

In the study of one-dimensional long-range interacting systems, Gaudin-type models [1] ocupied an important place, due to their role in establishing the integrability of the SeibergWitten theory [2,3] and diagonalizing the BCS Hamiltonian of ultrasmall metallic grains [4-6]. They also served as a testing ground for ideas such as the functional Bethe ansatz and general procedure of separation of variables [7-10].

The $t-J$ model was proposed in an attempt to understand high- T_{c} superconductivity. It is a correlated electron system with nearest-neighbour hopping (t) and anti-ferromagnetic exchange (J) of electrons. At the supersymmetric point, the model is integrable. The supersymmetric $t-J$ model without or with a boundary has been investigated by many authors using the nested algebraic Bethe ansatz method [11-14].

The periodic supersymmetric $t-J$ Gaudin model and its off-shell Bethe ansatz were investigated in [15, 16]. In this paper, we study the off-shell Bethe ansatz and KnizhnikZamolodchikov (KZ) equations of the open boundary super $t-J$ Gaudin model.

KZ equations were first proposed as a set of differential equations satisfied by correlation functions of the Wess-Zumino-Witten models [17]. The connection between Gaudin-type magnets and the KZ equations has been studied by many authors [18-22]. We are interested in the super KZ equations associated with $s l(2 \mid 1)^{(1)}$ superalgebra. We will construct and solve these KZ equations with the help of the super $t-J$ Gaudin models.

The outline of this paper is as follows. In section 2, we give some preliminaries on the supersymmetric $t-J$ system. In section 3 , we study KZ equations corresponding to the periodic $t-J$ Gaudin model using the off-shell Bethe ansatz equations. Then in sections 4, we
construct and diagonalize the open boundary super $t-J$ Gaudin model. In section 5, we obtain solutions to the KZ equations associated with the boundary Gaudin model.

2. Preliminaries

The supersymmetric $t-J$ model is described by the R-matrix arising from the three-dimensional representation of $s l(2 \mid 1)^{(1)}$. In the fermionic, fermionic and bosonic (FFB) grading of the representation space, the R-matrix is given by [23]
$R(\lambda)=\left(\begin{array}{ccccccccc}a(\lambda) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b(\lambda) & 0 & -c_{-}(\lambda) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b(\lambda) & 0 & 0 & 0 & c_{-}(\lambda) & 0 & 0 \\ 0 & -c_{+}(\lambda) & 0 & b(\lambda) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a(\lambda) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b(\lambda) & 0 & c_{-}(\lambda) & 0 \\ 0 & 0 & c_{+}(\lambda) & 0 & 0 & 0 & b(\lambda) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{+}(\lambda) & 0 & b(\lambda) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & w(\lambda)\end{array}\right)$
where η is a crossing parameter and

$$
\begin{align*}
& a(\lambda)=1 \quad b(\lambda)=\frac{\sinh (\lambda)}{\sinh (\lambda-\eta)} \quad w(\lambda)=\frac{\sinh (\lambda+\eta)}{\sinh (\lambda-\eta)} \\
& c_{+}(\lambda)=\frac{\mathrm{e}^{\lambda} \sinh (\eta)}{\sinh (\lambda-\eta)} \quad c_{-}(\lambda)=\frac{\mathrm{e}^{-\lambda} \sinh (\eta)}{\sinh (\lambda-\eta)} . \tag{2.2}
\end{align*}
$$

This R-matrix satisfies the graded Yang-Baxter equation (YBE)
$R(\lambda-\mu)_{a_{1} a_{2}}^{b_{1} b_{2}} R(\lambda)_{b_{1} a_{3}}^{c_{1} b_{3}} R(\mu)_{b_{2} b_{3}}^{c_{2} c_{3}}(-)^{\left(\epsilon_{b_{1}}+\epsilon_{c_{1}}\right) \epsilon_{b_{2}}}=R(\mu)_{a_{2} a_{3}}^{b_{2} b_{3}} R(\lambda)_{a_{1} b_{3}}^{b_{1} c_{3}} R(\lambda-\mu)_{b_{1} b_{2}}^{c_{1} c_{2}}(-)^{\left(\epsilon_{a_{1}}+\epsilon_{b_{1}}\right) \epsilon_{b_{2}}}$
where ϵ_{a} is the Grassmann parity: $\epsilon_{a}=0$ for bosons and $\epsilon_{a}=1$ for fermions. The R-matrix satisfies the unitarity and cross-unitarity relations,

$$
\begin{align*}
& R_{12}(\lambda) R_{21}(-\lambda)=\rho(\lambda) \text { id } \quad \rho(\lambda)=-\sinh (\lambda+\eta) \sinh (\lambda-\eta) \\
& R_{12}^{s t_{1}}(\lambda-\eta) M_{1} R_{21}^{s t r_{1}} M_{1}^{-1}=\tilde{\rho}(\lambda) \text { id } \quad \tilde{\rho}(\lambda)=\sinh (\lambda) \sinh (\lambda-\eta) \tag{2.4}
\end{align*}
$$

where M is a diagonal matrix $\operatorname{diag}\left(\mathrm{e}^{2 \eta}, 1,1\right)$ and $s t$ is the super-transposition defined by

$$
\begin{equation*}
\left(A^{s t}\right)_{i j}=A_{j i}(-1)^{\left(\epsilon_{i}+1\right) \epsilon_{j}} . \tag{2.5}
\end{equation*}
$$

Consider the L-operator

$$
\begin{equation*}
L_{a q}(\lambda) \equiv R_{a q}(\lambda) \tag{2.6}
\end{equation*}
$$

where a represents the auxiliary space and q represents the quantum space. The L-operator also obeys the (graded) YBE

$$
\begin{equation*}
R_{12}(\lambda-\mu) L_{1}(\lambda) L_{2}(\mu)=L_{2}(\mu) L_{1}(\lambda) R_{12}(\lambda-\mu) \tag{2.7}
\end{equation*}
$$

The tensor product is graded, namely,

$$
\begin{equation*}
(F \otimes G)_{a c}^{b d}=F_{a}^{b} G_{c}^{d}(-)^{\left(\epsilon_{a}+\epsilon_{b}\right) \epsilon_{c}} . \tag{2.8}
\end{equation*}
$$

The row-to-row monodromy matrix $T(\lambda)$ is defined as the product of N operators,

$$
\begin{equation*}
T_{a}(\lambda)=L_{a 1}\left(\lambda-z_{1}\right) L_{a 2}\left(\lambda-z_{2}\right) \cdots L_{a N}\left(\lambda-z_{N}\right) \tag{2.9}
\end{equation*}
$$

In matrix form,

$$
\begin{gather*}
\left\{[T(\lambda)]^{a b}\right\}_{\beta_{1} \cdots \beta_{N}}^{\alpha_{1} \cdots \alpha_{N}}=L_{1}\left(\lambda-z_{1}\right)_{a \alpha_{1}}^{c_{1} \beta_{1}} L_{2}\left(\lambda-z_{2}\right)_{c_{1} \alpha_{2}}^{c_{2} \beta_{2}} \cdots L_{N}\left(\lambda-z_{N}\right)_{c_{N-1} \alpha_{N}}^{b \beta_{N}} \\
\times(-1)^{\sum_{j=1}^{N-1}\left(\epsilon_{\alpha_{j}}+\epsilon_{\beta_{j}}\right) \sum_{i=j+1}^{N} \epsilon_{\alpha_{i}}} . \tag{2.10}
\end{gather*}
$$

By repeatedly using the YBE, one can easily check that the monodromy matrix satisfies

$$
\begin{equation*}
R(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R(\lambda-\mu) \tag{2.11}
\end{equation*}
$$

The transfer matrix $t(\lambda)$ is defined as the supertrace of the monodromy matrix over the auxiliary space:

$$
\begin{equation*}
t(\lambda)=\operatorname{str} T(\lambda)=\sum(-1)^{\epsilon_{a}} T(\lambda)_{a a} \tag{2.12}
\end{equation*}
$$

Using the YBE, one can show that the transfer matrix $t(\lambda)$ constitutes a one-parameter commuting family, i.e.

$$
\begin{equation*}
[t(\lambda), t(\mu)]=0 \tag{2.13}
\end{equation*}
$$

Therefore, the supersymmetric $t-J$ model is integrable.
To construct the integrable open boundary $t-J$ model, we consider the graded reflection relation

$$
\begin{align*}
& R(\lambda-\mu)_{a_{1} a_{2}}^{b_{1} b_{2}} K(\lambda)_{b_{1}}^{c_{1}} R(\lambda+\mu)_{b_{2} c_{1}}^{c_{2} d_{1}} K(\mu)_{c_{2}}^{d_{2}}(-1)^{\left(\epsilon_{b_{1}}+\epsilon_{c_{1}}\right) \epsilon b_{b_{2}}} \\
& \quad=K(\mu)_{a_{2}}^{b_{2}} R(\lambda+\mu)_{a_{1} b_{2}}^{b_{1} c_{2}} K(\lambda)_{b_{1}}^{c_{1}} R(\lambda-\mu)_{c_{2} c_{1}}^{d_{2} d_{1}}(-1)^{\left(\epsilon_{b_{1}}+\epsilon_{c_{1}}\right) \epsilon_{c_{2}}} \tag{2.14}
\end{align*}
$$

where $K(\lambda)$ is the reflection K-matrix. The diagonal solutions of the reflection equation were found in [14]. In the present paper, we only consider the special case in which $K(\lambda)=1$.

Following the standard procedure, we define the double-row monodromy matrix

$$
\begin{equation*}
\mathcal{T}(\lambda)=T(\lambda) K(\lambda) T^{-1}(-\lambda) \tag{2.15}
\end{equation*}
$$

Here $T(\lambda)$ is same as in the periodic case. One can check that the following relation is satisfied:

$$
\begin{align*}
& R(\lambda-\mu)_{a_{1} a_{2}}^{b_{1} b_{2}} \mathcal{T}(\lambda)_{b_{1}}^{c_{1}} R(\lambda+\mu)_{b_{2} c_{1}}^{c_{2} d_{1}} \mathcal{T}(\mu)_{c_{2}}^{d_{2}}(-1)^{\left(\epsilon_{1}+\epsilon_{c_{1}}\right) \epsilon \epsilon_{b_{2}}} \\
& \quad=\mathcal{T}(\mu)_{a_{2}}^{b_{2}} R(\lambda+\mu)_{a_{1} b_{2}}^{b_{1} c_{2}} \mathcal{T}(\lambda)_{b_{1}}^{c_{1}} R(\lambda-\mu)_{c_{2} c_{1}}^{d_{2} d_{1}}(-1)^{\left(\epsilon_{b_{1}}+\epsilon_{c_{1}}\right) \epsilon_{c_{2}}} . \tag{2.16}
\end{align*}
$$

The dual reflection relation reads

$$
\begin{align*}
& R_{12}(\mu-\lambda) K_{1}^{+}(\lambda) M_{1}^{-1} R_{21}(\eta-\lambda-\mu) K_{2}^{+}(\mu) M_{2}^{-1} \\
& \quad=K_{2}^{+}(\mu) M_{2}^{-1} R_{12}(\eta-\lambda-\mu) K_{1}^{+}(\lambda) M_{1}^{-1} R_{21}(\mu-\lambda) \tag{2.17}
\end{align*}
$$

Solution K^{+}associated with $K(\lambda)=1$ is given by

$$
\begin{equation*}
K^{+}(\lambda) \equiv M K(-\lambda+\eta / 2)=\operatorname{diag}\left(\mathrm{e}^{2 \eta}, 1,1\right) \tag{2.18}
\end{equation*}
$$

Define the boundary transfer matrix,

$$
\begin{equation*}
t^{b}(\lambda)=\operatorname{str} K^{+}(\lambda) \mathcal{T}(\lambda) \tag{2.19}
\end{equation*}
$$

From (2.4) and (2.16), one can show the commutativity of the transfer matrix for different λ values. Therefore, the open boundary $t-J$ model is integrable.

3. $K Z$ equations for the periodic $\boldsymbol{t} \boldsymbol{-} \boldsymbol{J}$ Gaudin model

The supersymmetric $t-J$ Gaudin model can be obtained by taking the quasi-classical limit $\eta \rightarrow 0$ of the transfer matrix at the point $\lambda=z_{j}$ [24]. So we expand the transfer matrix around the point $\eta=0$ to get

$$
\begin{equation*}
t\left(z_{j}\right)=-1+\eta H_{j}+\mathcal{O}\left(\eta^{2}\right) \tag{3.1}
\end{equation*}
$$

Then the commutation relation (2.13) implies that the Hamiltonian H_{j} of the periodic $t-J$ Gaudin model satisfies $\left[H_{j}, H_{k}\right]=0$. In terms of electron and spin operators,

$$
\begin{align*}
&\left.H_{j}=\frac{\mathrm{d} t(\lambda=}{\mathrm{d} \eta} z_{j}\right) \\
&= \sum_{k=1 \neq j}^{N} \frac{1}{\sinh \left(z_{j}-z_{k}\right)}\left\{\cosh \left(z_{j}-z_{k}\right)\left[-n_{j,-1} n_{k,-1}-n_{j, 1} n_{k, 1}+\left(1-n_{j}\right)\left(1-n_{k}\right)\right]\right. \\
&+\mathrm{e}^{-\left(z_{j}-z_{k}\right)}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}^{\dagger}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}\left(1-n_{k,-\sigma}\right)-S_{j}^{\dagger} S_{k}\right] \\
&\left.+\mathrm{e}^{z_{j}-z_{k}}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}^{\dagger}\left(1-n_{k,-\sigma}\right)-S_{j} S_{k}^{\dagger}\right]\right\} \tag{3.2}
\end{align*}
$$

where $n_{j, \pm 1}=c_{j, \pm 1}^{\dagger} c_{j, \pm 1}, n_{j,+1}+n_{j,-1}=n_{j}$ and

$$
S_{j}=c_{j, 1}^{\dagger} c_{j,-1} \quad S_{j}^{\dagger}=c_{j,-1}^{\dagger} c_{j, 1} \quad S_{j}^{z}=n_{j,-1}-n_{j, 1}
$$

Together with the operators

$$
T_{j}^{z}=1-n_{j,-1} \quad Q_{j, \sigma}^{\dagger}=c_{j, \sigma}^{\dagger}\left(1-n_{j,-\sigma}\right) \quad Q_{j, \sigma}=c_{j, \sigma}\left(1-n_{j,-\sigma}\right)
$$

S, S^{\dagger}, S^{z} form the $s l(2 \mid 1)$ algebra which has, among others,

$$
\begin{equation*}
\left[S^{\dagger}, S\right]=S^{z} \quad\left\{Q_{1}^{\dagger}, Q_{1}\right\}=T^{z} \quad\left\{Q_{-1}^{\dagger}, Q_{-1}\right\}=S^{z}+T^{z} \tag{3.3}
\end{equation*}
$$

The Hamiltonian (3.2) can be diagonalized by using the algebraic Bethe ansatz method [15, 16]. The off-shell Bethe ansatz equations can be shown to be given by

$$
\begin{equation*}
H_{j} \phi=E_{j} \phi+\sum_{\alpha=1}^{M} \frac{(-1)^{\alpha-1}}{\sinh \left(\mu_{\alpha}-z_{j}\right)} f_{\alpha} E_{j}^{-}\left(d_{\alpha}\right) \phi_{\alpha} \tag{3.4}
\end{equation*}
$$

where j indicates the lattice position and $E_{j}^{-}(s)$ acts on the quantum space with $E_{j}^{-}(s)=e_{13}$ for $s=1$ and $E_{j}^{-}(s)=e_{23}$ for $s=2$; and

$$
\begin{align*}
E_{j} & =\sum_{\alpha=1}^{n} \operatorname{coth}\left(z_{j}-\mu_{\alpha}\right)-2 \sum_{k=1, \neq j}^{N} \operatorname{coth}\left(z_{j}-z_{k}\right) \tag{3.5}\\
f_{\alpha} & =-\sum_{\gamma=1}^{m} \operatorname{coth}\left(\mu_{\alpha}-\mu_{\gamma}^{(1)}\right)+\sum_{k=1}^{N} \operatorname{coth}\left(\mu_{\alpha}-z_{k}\right) \tag{3.6}\\
\phi & =\prod_{\alpha=1}^{n}\left(\sum_{k=1}^{N} \frac{1}{\sinh \left(\mu_{\alpha}-z_{k}\right)} E_{k}^{-}\left(d_{\alpha}\right)\right)|0\rangle F^{d_{1} \cdots d_{n}} \tag{3.7}\\
\phi_{\alpha} & =\prod_{\beta=1, \neq \alpha}^{n}\left(\sum_{k=1}^{N} \frac{1}{\sinh \left(\mu_{\beta}-z_{k}\right)} E_{k}^{-}\left(d_{\beta}\right)\right)|0\rangle F^{d_{1} \cdots d_{n}} \tag{3.8}
\end{align*}
$$

where $F^{d_{1} \cdots d_{n}}$ is a function of the spectral parameter μ_{α}, and $\mu_{1}^{(1)}, \ldots, \mu_{m}^{(1)}$ satisfy the constraint

$$
\begin{equation*}
f_{\gamma}^{(1)} \equiv \sum_{\beta=1, \neq \alpha}^{n} \operatorname{coth}\left(\mu_{\beta}-\mu_{\gamma}^{(1)}\right)+2 \sum_{\delta=1, \neq \gamma}^{m} \operatorname{coth}\left(\mu_{\gamma}^{(1)}-\mu_{\delta}^{(1)}\right)=0 . \tag{3.9}
\end{equation*}
$$

In the derivation of the above off-shell Bethe ansatz equations, use has been made of the gauge transformation of the R-matrix:
$R(\lambda) \rightarrow \operatorname{diag}\left(\mathrm{e}^{\lambda / 2}, \mathrm{e}^{\lambda / 2}, \mathrm{e}^{-\lambda / 2}\right) \stackrel{s}{\otimes} 1 \cdot R(\lambda) \cdot \operatorname{diag}\left(\mathrm{e}^{-\lambda / 2}, \mathrm{e}^{-\lambda / 2}, \mathrm{e}^{\lambda / 2}\right) \stackrel{s}{\otimes} 1$.
As a set of partial differential equations, the KZ equations take the form

$$
\begin{equation*}
\nabla_{j} \Psi=0 \quad \text { for } \quad j=1,2, \ldots, N \tag{3.11}
\end{equation*}
$$

where the differential operator ∇_{j} is defined by the Gaudin Hamiltonian H_{j} :

$$
\begin{equation*}
\nabla_{j}=\kappa \frac{\partial}{\partial z_{j}}-H_{j} \tag{3.12}
\end{equation*}
$$

with κ being a parameter. Substituting (3.2) into (3.12), we can check

$$
\begin{equation*}
\left[\nabla_{j}, \nabla_{k}\right]=0 \tag{3.13}
\end{equation*}
$$

which ensures the integrability of the KZ equations.
To simplify our calculation, we make the following transformation:

$$
\begin{aligned}
H_{j} & \rightarrow H_{j}+2 \sum_{k=1, \neq j}^{N} \operatorname{coth}\left(z_{j}-z_{k}\right) \\
E_{j} & \rightarrow E_{j}+2 \sum_{k=1, \neq j}^{N} \operatorname{coth}\left(z_{j}-z_{k}\right)=\sum_{\alpha=1}^{n} \operatorname{coth}\left(z_{j}-\mu_{\alpha}\right) .
\end{aligned}
$$

Under this transformation, the form of the off-shell Bethe ansatz equations is invariant.
The function $\Psi(z)$ can be constructed by the hypergeometric function $\chi(z, \mu)$ which obeys the equations

$$
\begin{equation*}
\kappa \frac{\partial}{\partial z_{j}} \chi=E_{j} \chi \quad \kappa \frac{\partial}{\partial \mu_{\alpha}} \chi=f_{\alpha} \chi \tag{3.14}
\end{equation*}
$$

and the constraint $f_{\gamma}^{(1)}=0$. The solution to the above equations is given by

$$
\begin{equation*}
\chi(z, \mu)=\prod_{\beta<\alpha}\left[\sinh \left(\mu_{\alpha}-\mu_{\gamma}^{(1)}\right)\right]^{-1 / \kappa} \prod_{\alpha=1}^{n} \prod_{j=1}^{N}\left[\sinh \left(z_{j}-\mu_{\alpha}\right)\right]^{1 / \kappa} \tag{3.15}
\end{equation*}
$$

with μ_{α} satisfying the condition $f_{\gamma}^{(1)}=0$. With the help of $\chi(z, \mu)$, the function $\Psi(z)$ is given by

$$
\begin{equation*}
\Psi(z)=\oint_{C} \cdots \oint_{C} \mathrm{~d} \mu_{1} \cdots \mathrm{~d} \mu_{n} \chi(t, z) \phi(t, z) \tag{3.16}
\end{equation*}
$$

where the integration path C is a closed contour in the Riemann surface such that the integrand resumes its initial value after t_{α} has described it. Substituting the expressions of ∇_{j} and $\Psi(z)$ into (3.11), we can show that the KZ equation is satisfied.

4. Bethe ansatz for the boundary $\boldsymbol{t} \boldsymbol{-} \boldsymbol{J}$ Gaudin model

Similar to the periodic case, the boundary $t-J$ Gaudin system can be obtained by expanding the boundary transfer matrix at the point $\lambda=z_{j}$ around $\eta=0$:

$$
\begin{equation*}
t^{b}\left(\lambda=z_{j}\right)=1+\eta H_{j}^{b}+\mathcal{O}\left(\eta^{2}\right) \tag{4.1}
\end{equation*}
$$

The second term on the right-hand side gives the Hamiltonian of the open boundary super $t-J$ Gaudin model. Explicitly,

$$
\begin{align*}
& H_{j}=\left.\frac{\mathrm{d} t\left(z_{j}\right)}{\mathrm{d} \eta}\right|_{\eta=0} \\
&= 2\left(1+3 \operatorname{coth}\left(2 z_{j}\right)\right) n_{j}+\sum_{k=1 \neq j}^{N} \frac{1}{\sinh \left(z_{j}-z_{k}\right)}\left\{\operatorname { c o s h } (z _ { j } - z _ { k }) \left[-n_{j,-1} n_{k,-1}-n_{j, 1} n_{k, 1}\right.\right. \\
&\left.+\left(1-n_{j}\right)\left(1-n_{k}\right)\right]+\mathrm{e}^{-\left(z_{j}-z_{k}\right)}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}^{\dagger}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}\left(1-n_{k,-\sigma}\right)-S_{j}^{\dagger} S_{k}\right] \\
&\left.+\mathrm{e}^{z_{j}-z_{k}}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}^{\dagger}\left(1-n_{k,-\sigma}\right)-S_{j} S_{k}^{\dagger}\right]\right\} \\
&+\sum_{k=1 \neq j}^{N} \frac{1}{\sinh \left(z_{j}+z_{k}\right)}\left\{\cosh \left(z_{j}+z_{k}\right)\left[-n_{j,-1} n_{k,-1}-n_{j, 1} n_{k, 1}+\left(1-n_{j}\right)\left(1-n_{k}\right)\right]\right. \\
&-\mathrm{e}^{-\left(z_{j}+z_{k}\right)}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}^{\dagger}\left(1-n_{k,-\sigma}\right)+S_{j} S_{k}^{\dagger}\right] \\
&\left.-\mathrm{e}^{z_{j}+z_{k}}\left[\sum_{\sigma= \pm 1} c_{j, \sigma}^{\dagger}\left(1-n_{j,-\sigma}\right) c_{k, \sigma}\left(1-n_{k,-\sigma}\right)+S_{j}^{\dagger} S_{k}\right]\right\} \tag{4.2}
\end{align*}
$$

As the transfer matrix $t^{b}(\lambda)$ forms a commutation family, therefore, one can prove from (4.1) the integrability of the Hamiltonian H_{j}^{b},

$$
\begin{equation*}
\left[H_{j}^{b}, H_{k}^{b}\right]=0 \quad \text { for } \quad j=1,2, \ldots, N \tag{4.3}
\end{equation*}
$$

We write the double-monodromy matrix (2.15) as

$$
\mathcal{T}(\lambda)=\left(\begin{array}{lll}
\mathcal{A}_{11}(\lambda) & \mathcal{A}_{12}(\lambda) & \mathcal{B}_{1}(\lambda) \tag{4.4}\\
\mathcal{A}_{21}(\lambda) & \mathcal{A}_{22}(\lambda) & \mathcal{B}_{2}(\lambda) \\
\mathcal{C}_{1}(\lambda) & \mathcal{C}_{2}(\lambda) & \mathcal{D}(\lambda)
\end{array}\right)
$$

Around $\eta=0$,

$$
\begin{align*}
\mathcal{T}(\lambda) & =1+\eta \hat{\mathcal{T}}(\lambda)+\mathcal{O}\left(\eta^{2}\right) \\
& =1+\eta\left(\begin{array}{lll}
\hat{\mathcal{A}}_{11}(\lambda) & \hat{\mathcal{A}}_{12}(\lambda) & \hat{\mathcal{B}}_{1}(\lambda) \\
\hat{\mathcal{A}}_{21}(\lambda) & \hat{\mathcal{A}}_{22}(\lambda) & \hat{\mathcal{B}}_{2}(\lambda) \\
\mathcal{C}_{1}(\lambda) & \hat{\mathcal{C}}_{2}(\lambda) & \hat{\mathcal{D}}(\lambda)
\end{array}\right)+\mathcal{O}\left(\eta^{2}\right) \tag{4.5}
\end{align*}
$$

Define the vacuum state

$$
|0\rangle_{n}=\left(\begin{array}{l}
0 \tag{4.6}\\
0 \\
1
\end{array}\right) \quad|0\rangle=\otimes_{k=1}^{N}|0\rangle_{k}
$$

and the Bethe state

$$
\begin{equation*}
\phi_{b}=\hat{\mathcal{C}}_{d_{1}}\left(\mu_{1}\right) \hat{\mathcal{C}}_{d_{2}}\left(\mu_{2}\right) \cdots \hat{\mathcal{C}}_{d_{n}}\left(\mu_{n}\right)|0\rangle F^{d_{1} \cdots d_{n}} . \tag{4.7}
\end{equation*}
$$

Applying $\hat{\mathcal{T}}\left(\lambda=z_{j}\right), j=1,2, \ldots, N$, to the vacuum state (4.6), we have
$\hat{\mathcal{B}}_{a}\left(z_{j}\right)|0\rangle=0 \quad \hat{\mathcal{C}}_{a}\left(z_{j}\right)|0\rangle \neq 0$
$\hat{\mathcal{D}}\left(z_{j}\right)|0\rangle=\sum_{i=1}^{N} 2\left(\operatorname{coth}\left(z_{j}-z_{i}\right)+\operatorname{coth}\left(z_{j}-z_{i}\right)\right)|0\rangle$
$\hat{\mathcal{A}}_{a b}(\lambda)|0\rangle= \begin{cases}0 & \text { for } \lambda=z_{j}, \text { and } a \neq b \\ \sum_{i=1}^{N}\left(\operatorname{coth}\left(\lambda+z_{i}\right)+\operatorname{coth}\left(\lambda-z_{i}\right)\right) & \text { for } \lambda \neq z_{j}, \text { and } a=b .\end{cases}$
Write

$$
\begin{equation*}
\left.\hat{\mathcal{A}}_{a b}(\lambda)\right|_{\eta=0}=\left.\hat{\tilde{\mathcal{A}}}_{a b}(\lambda)\right|_{\eta=0}+\delta_{a b} \frac{1}{\sinh (2 \lambda)} \mathcal{D}(\lambda)_{\eta=0} \tag{4.9}
\end{equation*}
$$

where
$\hat{\tilde{\mathcal{A}}}_{a b}(\lambda)|0\rangle=\sum_{i=1}^{N}\left(\operatorname{coth}\left(\lambda+z_{i}\right)+\operatorname{coth}\left(\lambda-z_{i}\right)\right)-\frac{\delta_{a b}}{\sinh (2 \lambda)} \mathcal{D}(\lambda)_{\eta=0}$.
Then

$$
\begin{align*}
H_{j}^{b} & =\frac{\mathrm{d}}{\mathrm{~d} \eta}\left(K^{+} \mathcal{T}\left(z_{j}\right)\right)_{\eta=0} \\
& =-\hat{\mathcal{A}}_{a a}\left(z_{j}\right)+\hat{\mathcal{D}}\left(z_{j}\right)-\left(k_{a}^{+}\right)_{\eta=0}^{\prime} \mathcal{A}\left(z_{j}\right)_{\eta=0}-U \mathcal{D}(\lambda)_{\eta=0} \tag{4.11}
\end{align*}
$$

where $a=1,2$ and $U=2 / \sinh \left(2 z_{j}\right)$. The last term in (4.11) corresponds to the boundary condition.

We now find commutation relations between $\hat{\tilde{\mathcal{A}}}_{a b}(\lambda), \hat{\mathcal{D}}(\lambda)$ and $\hat{\mathcal{C}}_{d_{i}}(\mu)$. After a tedious but direct computation, we get

$$
\begin{align*}
& \hat{\mathcal{C}}_{d_{1}}\left(\mu_{1}\right) \hat{\mathcal{C}}_{d_{2}}\left(\mu_{2}\right)=-\hat{\mathcal{C}}_{c_{2}}\left(\mu_{2}\right) \hat{\mathcal{C}}_{c_{1}}\left(\mu_{1}\right) \\
& \hat{\mathcal{D}}\left(z_{j}\right) \hat{\mathcal{C}}_{d}(\mu)= \hat{\mathcal{C}}_{d}(\mu) \hat{\mathcal{D}}\left(z_{j}\right)-\left.\frac{\sinh \left(2 z_{j}\right)}{\sinh \left(z_{j}-\mu\right) \sinh \left(z_{j}+\mu\right)} \hat{\mathcal{C}}_{d}(\mu) D\left(z_{j}\right)\right|_{\eta=0} \\
&+\frac{1}{\sinh \left(z_{j}-\mu\right)}\left(-E_{j}^{-}(d) \hat{\mathcal{D}}(\mu)+\left.\hat{\mathcal{C}}_{d}\left(z_{j}\right) \mathcal{D}(\mu)\right|_{\eta=0}\right) \\
&-\frac{1}{\sinh \left(z_{j}+\mu\right)}\left(-E_{j}^{-}(d) \hat{\tilde{\mathcal{A}}}_{b d}(\mu)+\left.\hat{\mathcal{C}}_{b}\left(z_{j}\right) \tilde{\mathcal{A}}_{b d}(\mu)\right|_{\eta=0}\right) \\
&+\left.\frac{2 \operatorname{coth}(2 \mu)}{\sinh \left(z_{j}-\mu\right)} E_{j}^{-}(d) \mathcal{D}(\mu)\right|_{\eta=0}-\left.\frac{2 \cosh \left(z_{j}+\mu\right)}{\sinh ^{2}\left(z_{j}+\mu\right)} E_{j}^{-}(b) \tilde{\mathcal{A}}_{b d}(\mu)\right|_{\eta=0} \tag{4.13}\\
& \hat{\tilde{\mathcal{A}}}_{a_{1} d_{1}}\left(z_{j}\right) \hat{\mathcal{C}}_{d_{2}}(\mu)=\hat{\mathcal{C}}_{d_{2}}(\mu) \hat{\mathcal{A}}_{a_{1} d_{1}}\left(z_{j}\right) \\
&+\left.\left(r_{12}\left(z_{j}+\mu+\eta\right)_{a_{1} c_{1} b_{2}}^{c_{2}} r_{21}\left(z_{j}-\mu\right)_{b_{1} b_{2}}^{d_{1} d_{2}}\right)_{\eta=0}^{\prime} \hat{\mathcal{C}}_{c_{2}}(\mu) \tilde{\mathcal{A}}_{c_{1} b_{1}}(\lambda)\right|_{\eta=0} \\
&+\frac{1}{\sinh \left(z_{j}-\mu\right)} \delta_{a_{1} b_{2}} \delta_{b_{1} d_{1}}\left(-E_{j}^{-}\left(b_{1}\right){\hat{\tilde{\mathcal{A}}} a_{1} d_{2}}(\mu)+\left.\hat{\mathcal{C}}_{d_{1}}\left(z_{j}\right) \tilde{\mathcal{A}}_{a_{1} d_{2}}(\mu)\right|_{\eta=0}\right) \\
&-\frac{1}{\sinh \left(z_{j}+\mu\right)} \delta_{a_{1} d_{2}} \delta_{b_{2} d_{1}}\left(-E_{j}^{-}\left(b_{2}\right) \hat{\mathcal{D}}(\mu)+\left.\hat{\mathcal{C}}_{b_{2}}\left(z_{j}\right) \mathcal{D}(\mu)\right|_{\eta=0}\right) \\
&-\left(\left.\frac{\left.\sinh (\eta) r_{12}\left(2 z_{j}+\eta\right)_{a_{1} b_{1}}^{b_{2} d_{1}}\right)^{\prime \prime}}{\sinh \left(z_{j}-\mu\right)} E_{\eta=0}^{-}\left(b_{1}\right) \tilde{\mathcal{A}}_{b_{2} d_{2}}(\mu)\right|_{\eta=0}\right. \\
&+\left(\frac{\sin (2 \mu) \sin (\eta) r_{12}\left(2 z_{j}+\eta\right)_{a_{1} b_{2}}^{d_{2} d_{1}}}{\sinh \left(z_{j}+\mu+\eta\right) \sinh ^{\prime \prime}(2 \mu+\eta)}\right)_{\eta=0}^{\left.E_{j}^{-}\left(b_{2}\right) \mathcal{D}(\mu)\right|_{\eta=0}} \tag{4.14}
\end{align*}
$$

$$
\begin{align*}
& \mathcal{D}\left(z_{j}\right) \hat{\mathcal{C}}_{d}(\mu)_{\eta=0}=\hat{\mathcal{C}}_{d}(\mu) \mathcal{D}\left(z_{j}\right)_{\eta=0}+\frac{1}{\sinh \left(z_{j}-\mu\right)} E_{j}^{-}(d) \mathcal{D}(\mu)_{\eta=0} \\
&-\frac{1}{\sinh \left(z_{j}+\mu\right)} E_{j}^{-}(b) \tilde{\mathcal{A}}_{b d}(\mu)_{\eta=0} \tag{4.15}\\
& \tilde{\mathcal{A}}_{a_{1} d_{1}}\left(z_{j}\right) \hat{\mathcal{C}}_{d_{2}}(\mu)_{\eta=0}=\hat{\mathcal{C}}_{d_{2}}(\mu) \tilde{\mathcal{A}}_{a_{1} d_{1}}\left(z_{j}\right)_{\eta=0}+\frac{1}{\sinh \left(z_{j}-\mu\right)} E_{j}^{-}\left(d_{1}\right) \tilde{\mathcal{A}}_{a_{1} d_{2}}(\mu)_{\eta=0} \\
&-\frac{1}{\sinh \left(z_{j}+\mu\right)} \delta_{a_{1} d_{2}} E_{j}^{-}\left(d_{1}\right) \mathcal{D}(\mu)_{\eta=0} \tag{4.16}
\end{align*}
$$

where the r-matrix $r(\lambda)$ is defined by
$r(\lambda)=\frac{1}{\sinh (\lambda)}\left(\begin{array}{cccc}\sinh (\lambda-\eta) & 0 & 0 & 0 \\ 0 & \sinh (\lambda) & -\mathrm{e}^{-\lambda} \sinh (\eta) & 0 \\ 0 & -\mathrm{e}^{\lambda} \sinh (\eta) & \sinh (\lambda) & 0 \\ 0 & 0 & 0 & \sinh (\lambda-\eta)\end{array}\right)$.
Then, applying (4.11) to the Bethe state and using the above commutation relations repeatedly, we obtain the off-shell Bethe ansatz equations

$$
\begin{equation*}
H_{j}^{b} \phi^{b}=E_{j}^{b} \phi^{b}-\sum_{\alpha=1}^{n} W^{b}\left(\mu_{\alpha}, z_{j}\right) f_{\alpha}^{b} E_{j}^{-} \phi_{\alpha}^{b} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{align*}
\phi^{b} & =\prod_{\alpha=1}^{n}\left(\sum_{k=1}^{N} \frac{2 \sinh \left(\mu_{\alpha}\right) \cosh \left(z_{k}\right)}{\sinh \left(\mu_{\alpha}-z_{k}\right) \sinh \left(\mu_{\alpha}+z_{k}\right)} E_{k}^{-}\left(d_{\alpha}\right)\right)|0\rangle F^{d_{1} \cdots d_{n}} \tag{4.19}\\
\phi_{\alpha}^{b} & =\prod_{\beta=1, \neq \alpha}^{n}\left(\sum_{k=1}^{N} \frac{2 \sinh \left(\mu_{\beta}\right) \cosh \left(z_{k}\right)}{\sinh \left(\mu_{\beta}-z_{k}\right) \sinh \left(\mu_{\beta}+z_{k}\right)} E_{k}^{-}\left(d_{\beta}\right)\right)|0\rangle F^{d_{1} \cdots d_{n}} \tag{4.20}
\end{align*}
$$

$E_{j}^{b}=\frac{2}{\sinh \left(z_{j}\right)}-2 \sum_{k=1, \neq j}^{N}\left[\operatorname{coth}\left(z_{j}+z_{k}\right)+\operatorname{coth}\left(z_{j}-z_{k}\right)\right]$

$$
+\sum_{\alpha=1}^{n}\left[\operatorname{coth}\left(z_{j}+\mu_{\alpha}\right)+\operatorname{coth}\left(z_{j}-\mu_{\alpha}\right)\right]
$$

$$
f_{\alpha}^{b}=-\frac{2}{\sinh \left(2 \mu_{\alpha}\right)}-\sum_{\beta=1, \neq \alpha}^{n}\left(\operatorname{coth}\left(\mu_{\alpha}-\mu_{\beta}\right)+\operatorname{coth}\left(\mu_{\alpha}+\mu_{\beta}\right)\right)
$$

$$
\begin{equation*}
+\sum_{k=1}^{N}\left(\operatorname{coth}\left(\mu_{\alpha}-z_{k}\right)+\operatorname{coth}\left(\mu_{\alpha}+z_{k}\right)\right)+\Lambda_{b}^{(1)}\left(\mu_{\alpha}\right) \tag{4.22}
\end{equation*}
$$

$$
\begin{equation*}
W^{b}\left(\mu_{\alpha}, z_{j}\right)=\frac{(-1)^{\alpha-1} 2 \sinh \left(z_{j}\right) \cosh \left(\mu_{\alpha}\right)}{\sinh \left(z_{j}+\mu_{\alpha}\right) \sinh \left(z_{j}-\mu_{\alpha}\right)} \tag{4.23}
\end{equation*}
$$

Here $\Lambda_{b}^{(1)}$ is the eigenvalue of the nested transfer matrix
$\hat{t}_{b}^{(1)}(\lambda)=\frac{\mathrm{d}}{\mathrm{d} \eta}\left[\operatorname{str} K^{(1)+} r\left(\lambda+\mu_{1}+\eta\right)_{a c_{1}}^{a_{1} e_{1}} r\left(\lambda+\mu_{2}+\eta\right)_{a_{1} c_{2}}^{a_{2} e_{2}} \cdots r\left(\lambda+\mu_{n}+\eta\right)_{a_{n-1} c_{n}}^{a_{n} e_{n}}\right.$

$$
\left.K^{(1)} r_{21}\left(\lambda-\mu_{n}\right)_{b_{n} e_{n}}^{b_{n-1} d_{n}} \cdots r_{21}\left(\lambda-\mu_{2}\right)_{b_{2} e_{2}}^{b_{1} d_{2}} r_{21}\left(\lambda-\mu_{n}\right)_{b_{1} e_{1}}^{b_{n} d_{1}}\right]
$$

$$
\begin{equation*}
\equiv \frac{\mathrm{d}}{\mathrm{~d} \eta} \operatorname{str} K^{(1)+} \mathcal{T}^{(1)}(\lambda) \tag{4.24}
\end{equation*}
$$

where

$$
K^{(1)+}=\operatorname{diag}\left(\mathrm{e}^{2 \eta}, 1\right) \quad K^{(1)}=(1-\sinh (\eta) / \sinh (2 \lambda+\eta)) \cdot \mathrm{id} .
$$

The nested eigenvalue $\Lambda_{b}^{(1)}$ can be obtained using the nested Bethe ansatz. This is done as follows. Investigating the nested r-matrix (4.17), one finds that it satisfies the unitarity and cross-unitarity relations

$$
\begin{align*}
& r_{12}(\lambda) r_{21}(-\lambda)=-\sinh (\lambda+\eta) \sinh (\lambda+\eta) \cdot \mathrm{id} \tag{4.25}\\
& r_{12}^{s t_{1}}(2 \eta-\lambda) r_{21}^{s t_{2}}(\lambda)=\sinh (\lambda) \sinh (2 \lambda-\eta) \cdot \mathrm{id}
\end{align*}
$$

and the YBE

$$
\begin{equation*}
r_{12}(\lambda-\mu) T_{1}^{(1)}(\lambda) T_{2}^{(1)}(\mu)=T_{2}^{(1)}(\mu) T_{1}^{(1)}(\lambda) r_{12}(\lambda-\mu) \tag{4.26}
\end{equation*}
$$

where $T^{(1)}(\lambda)$ is defined by

$$
\begin{equation*}
T^{(1)}(\lambda) \equiv r_{m}(\lambda) \cdots r_{2}(\lambda) r_{1}(\lambda) \tag{4.27}
\end{equation*}
$$

We also have boundary reflection and dual relection equations

$$
\begin{align*}
& r_{12}(\lambda-\mu) K_{1}^{(1)}(\lambda) r_{21}(\lambda+\mu) K_{2}^{(1)}(\mu)=K_{2}^{(1)}(\mu) r_{12}(\lambda+\mu) K_{1}^{(1)}(\lambda) r_{21}(\lambda-\mu) \tag{4.28}\\
& r_{12}(\mu-\lambda) K_{1}^{(1)^{+}}(\lambda) M_{1}^{-1} r_{21}(2 \eta-\lambda-\mu) K_{2}^{(1)^{+}}(\mu) M_{2}^{-1} \\
& =K_{2}^{(1)^{+}}(\mu) M_{2}^{-1} r_{12}(2 \eta-\lambda-\mu) K_{1}^{(1)^{+}}(\lambda) M_{1}^{-1} r_{21}(\mu-\lambda) \tag{4.29}
\end{align*}
$$

One can check $K^{(1)}=2 \cosh (\eta+\lambda) \sinh (\lambda) / \sinh (2 \lambda+\eta)$ and $K^{(1)^{+}}=\operatorname{diag}\left(\mathrm{e}^{2 \eta}, 1\right)$ are solutions to the first and second equations, respectively.

Define the double-row monodromy matrix for the open boundary system

$$
\begin{align*}
\mathcal{T}^{(1)}(\lambda) & \equiv T^{(1)}(\tilde{\lambda}) K^{(1)}(\lambda) T^{(1)^{-1}}(-\tilde{\lambda}) \\
& =\left(\begin{array}{ll}
\mathcal{A}^{(1)}(\lambda) & \mathcal{B}^{(1)}(\lambda) \\
\mathcal{C}^{(1)}(\lambda) & \mathcal{D}^{(1)}(\lambda)
\end{array}\right) \tag{4.30}
\end{align*}
$$

where $T^{(1)}$ and $T^{(1)^{-1}}$ are defined by

$$
\begin{align*}
T_{a a_{n}}^{(1)}(\tilde{\lambda})_{c_{1} \cdots c_{n}}^{e_{1} \cdots e_{n}} & =r\left(\tilde{\lambda}+\tilde{\mu}_{1}\right)_{a c_{1}}^{a_{1} e_{1}} r\left(\tilde{\lambda}+\tilde{\mu}_{2}\right)_{a_{1} c_{2}}^{a_{2} e_{2}} \cdots r\left(\tilde{\lambda}+\tilde{\mu}_{n}\right)_{a_{n-1}}^{a_{n} e_{n} c_{n}} \tag{4.31}\\
& =L_{1}^{(1)}\left(\tilde{\lambda}+\tilde{\mu}_{1}\right) L_{2}^{(1)}\left(\tilde{\lambda}+\tilde{\mu}_{2}\right) \cdots L_{n}^{(1)}\left(\tilde{\lambda}+\tilde{\mu}_{n}\right) \\
T^{(1)^{-1}}(\tilde{\lambda})= & \left.r_{21}\left(\tilde{\lambda}-\tilde{\mu}_{n}\right)_{b_{n-1} e_{n}}^{b_{n} d_{n}} \cdots r\left(\tilde{\lambda}-\tilde{\mu}_{2}\right)_{b_{2} e_{2}}^{b_{1} d_{2}} r \tilde{\lambda}-\tilde{\mu}_{1}\right)_{b_{1} e_{1}}^{a d_{1}} \tag{4.32}\\
& =L_{n}^{(1)^{-1}}\left(-\tilde{\lambda}+\tilde{\mu}_{n}\right) \cdots L_{2}^{(1)^{-1}}\left(-\tilde{\lambda}+\tilde{\mu}_{2}\right) L_{1}^{(1)^{-1}}\left(-\tilde{\lambda}+\tilde{\mu}_{1}\right)
\end{align*}
$$

respectively, with $L^{(1)}(\lambda) \equiv r(\lambda)$. Let $\tilde{\lambda}=\lambda+\eta / 2, \tilde{\mu}=\mu-\eta / 2$. Then the above formulae coincide with those appeared in (4.24).

The double-row monodromy matrix satisfies the reflection equation

$$
\begin{equation*}
r_{12}(\lambda-\mu) \mathcal{T}_{1}^{(1)}(\lambda) r_{21}(\lambda+\mu) \mathcal{T}_{2}^{(1)}(\mu)=\mathcal{T}_{2}^{(1)}(\mu) r_{12}(\lambda+\mu) \mathcal{T}_{1}^{(1)}(\lambda) r_{21}(\lambda-\mu) \tag{4.33}
\end{equation*}
$$

Thus, we can define the transfer matrix as

$$
\begin{equation*}
t_{b}^{(1)}(\lambda)=\operatorname{str} K^{(1)^{+}} \mathcal{T}^{(1)}(\lambda) \tag{4.34}
\end{equation*}
$$

Around $\eta=0$, we have the expansions

$$
\begin{align*}
& \mathcal{T}^{(1)}(\lambda)=1+\eta\left(\begin{array}{ll}
\hat{\mathcal{A}}^{(1)}(\lambda) & \hat{\mathcal{B}}^{(1)}(\lambda) \\
\hat{\mathcal{C}}^{(1)}(\lambda) & \hat{\mathcal{D}}^{(1)}(\lambda)
\end{array}\right)_{\eta=0}+\mathcal{O}\left(\eta^{2}\right) \tag{4.35}\\
& t_{b}^{(1)}(\lambda)=-2+\eta \hat{t}_{b}^{(1)}(\lambda)_{\eta=0}+\mathcal{O}\left(\eta^{2}\right) \tag{4.36}
\end{align*}
$$

Write

$$
\begin{equation*}
\left.\hat{\mathcal{A}}^{(1)}(\lambda)\right|_{\eta=0}=\left.\hat{\tilde{\mathcal{A}}}^{(1)}(\lambda)\right|_{\eta=0}-\left.\frac{\mathrm{e}^{-2 \lambda}}{\sinh (2 \lambda)} \mathcal{D}^{(1)}(\lambda)\right|_{\eta=0} \tag{4.37}
\end{equation*}
$$

Then we find the commutation relations between $\hat{t}_{b}^{(1)}(\lambda)$ and $\hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right)$:

$$
\begin{align*}
& \hat{\mathcal{C}}^{(1)}(\lambda) \hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right)=\hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right) \hat{\mathcal{C}}^{(1)}(\lambda) \tag{4.38}\\
& \hat{\mathcal{D}}^{(1)}(\lambda) \hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right)=\hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right) \hat{\mathcal{D}}^{(1)}(\lambda)+\frac{\sinh (2 \lambda)}{\sinh \left(\lambda+\mu^{(1)}\right) \sinh \left(\lambda-\mu^{(1)}\right)} \hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right) \mathcal{D}^{(1)}(\lambda)_{\eta=0} \\
&-\frac{\mathrm{e}^{\left(\lambda-\mu^{(1)}\right)}}{\sinh \left(\lambda-\mu^{(1)}\right)}\left(\mathcal{C}^{(1)}(\lambda) \hat{\mathcal{D}}^{(1)}\left(\mu^{(1)}\right)+\hat{\mathcal{C}}^{(1)}(\lambda) \mathcal{D}^{(1)}\left(\mu^{(1)}\right)\right)_{\eta=0} \\
&+\frac{\mathrm{e}^{\left(\lambda+\mu^{(1)}\right)}}{\sinh \left(\lambda+\mu^{(1)}\right)}\left(\mathcal{C}^{(1)}(\lambda) \hat{\tilde{\mathcal{A}}}^{(1)}\left(\mu^{(1)}\right)+\hat{\mathcal{C}}^{(1)}(\lambda) \tilde{\mathcal{A}}^{(1)}\left(\mu^{(1)}\right)\right)_{\eta=0} \tag{4.39}\\
&+\frac{\mathrm{e}^{-\left(\lambda-\mu^{(1)}\right)}}{\sinh \left(\lambda-\mu^{(1)}\right)}\left(\mathcal{C}^{(1)}(\lambda) \hat{\mathcal{A}}^{(1)}\left(\mu^{(1)}\right)+\hat{\mathcal{C}}^{(1)}(\lambda) \tilde{\mathcal{A}}^{(1)}\left(\mu^{(1)}\right)\right)_{\eta=0} \\
& \hat{\mathcal{A}}^{(1)}(\lambda) \hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right)=\hat{\mathcal{C}}^{(1)}\left(\mu^{(1)}\right) \hat{\mathcal{A}}^{(1)}(\lambda)-\frac{\mathrm{e}^{-\left(\lambda+\mu^{(1)}\right)}}{\sinh (2 \lambda)}\left(\mathcal{C}^{(1)}(\lambda) \hat{\mathcal{D}}^{(1)}(\mu)+\hat{\mathcal{C}}^{(1)}(\lambda) \mathcal{D}^{(1)}(\mu)\right)_{\eta=0} \\
& \mathcal{D}^{(1)}(\lambda) \hat{\mathcal{C}}\left(\mu^{(1)}\right)_{\eta=0}\left.=\hat{\mathcal{C}}\left(\mu^{(1)}\right) \mathcal{D}^{(1)}(\lambda)_{\eta=0}+\frac{\mathrm{e}^{\lambda-\mu^{(1)}}}{\sinh \left(\lambda-\mu^{(1)}\right)} \mathcal{C}^{(1)}(\lambda) \mathcal{D}^{(1)}\left(\mu^{(1)}\right)_{\eta=0}^{(1)}\right) \tilde{\mathcal{A}}^{(1)}(\lambda)_{\eta=0} \tag{4.40}\\
&-\frac{\mathrm{e}^{\lambda+\mu^{(1)}}}{\sinh \left(\lambda-\mu^{(1)}\right)} \mathcal{C}^{(1)}(\lambda) \tilde{\mathcal{A}}^{(1)}\left(\mu^{(1)}\right)_{\eta=0} \\
& \tilde{\mathcal{A}}^{(1)}(\lambda) \hat{\mathcal{C}}(\mu)_{\eta=0}=\hat{\mathcal{C}}(\mu) \tilde{\mathcal{A}}^{(1)}(\lambda)_{\eta=0}+\frac{\mathrm{e}^{-(\lambda-\mu)}}{\sinh (\lambda-\mu)} \mathcal{C}^{(1)}(\lambda) \tilde{\mathcal{A}}^{(1)}(\mu)_{\eta=0} \tag{4.41}\\
& \frac{\mathrm{e}^{-(\lambda+\mu)}}{\sinh (\lambda-\mu)} \mathcal{C}^{(1)}(\lambda) \mathcal{D}^{(1)}(\mu)_{\eta=0} .
\end{align*}
$$

Substituting the expressions of $K^{(1)}(\lambda)$ and $K^{(1)^{+}}(\lambda)$ into the nested transfer matrix, one obtains the transfer matrix $\hat{t}_{b}^{(1)}(\tilde{\lambda})$ of the super $t-J$ Gaudin model

$$
\begin{align*}
\hat{t}_{b}^{(1)}(\tilde{\lambda}) & \equiv \frac{\mathrm{d}}{\mathrm{~d} \eta} \operatorname{str}\left(\begin{array}{cc}
\mathrm{e}^{2 \eta} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\mathcal{A}^{(1)}(\tilde{\lambda}) & \mathcal{B}^{(1)}(\tilde{\lambda}) \\
\mathcal{C}^{(1)}(\tilde{\lambda}) & \mathcal{D}^{(1)}(\tilde{\lambda})
\end{array}\right)_{\eta=0} \\
& =-\hat{\mathcal{A}}^{(1)}(\lambda)-\hat{\mathcal{D}}^{(1)}(\lambda)-2 \mathcal{A}^{(1)}(\tilde{\lambda})_{\eta=0} \\
& =-\hat{\mathcal{A}}^{(1)}(\lambda)-\hat{\mathcal{D}}^{(1)}(\lambda)-2 \tilde{\mathcal{A}}^{(1)}(\tilde{\lambda})_{\eta=0}-\frac{\mathrm{e}^{-2 \tilde{\lambda}}}{\sinh (2 \tilde{\lambda})} \mathcal{D}^{(1)}(\tilde{\lambda})_{\eta=0} \tag{4.43}
\end{align*}
$$

Define the vacuum state for the nested open boundary system

$$
\begin{equation*}
|0\rangle^{(1)}=\otimes_{k=1}^{n}|0\rangle_{k}^{(1)} \tag{4.44}
\end{equation*}
$$

with $|0\rangle_{k}^{(1)} \equiv\binom{0}{1}$. Then, applying the elements of $\hat{\mathcal{T}}(\lambda)$ to the vacuum, we obtain

$$
\begin{equation*}
\hat{\mathcal{B}}^{(1)}(\lambda)|0\rangle=0 \quad \hat{\mathcal{C}}^{(1)}(\lambda)|0\rangle \neq 0 \tag{4.45}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathcal{D}}^{(1)}(\lambda)|0\rangle=-\left(\frac{1}{\sinh (2 \lambda)}+\sum_{i=1}^{n}\left(\operatorname{coth}\left(\lambda+\mu_{i}\right)+\operatorname{coth}\left(\lambda-\mu_{i}\right)\right)|0\rangle^{(1)}\right. \\
& \lambda \neq \mu_{k} \quad(k=1,2, \ldots, m) \tag{4.46}
\end{align*}
$$

Using the nested YBE (4.26) and the transformation (4.37), we obtain

$$
\begin{equation*}
\hat{\tilde{\mathcal{A}}}^{(1)}(\lambda)|0\rangle^{(1)}=-\frac{\mathrm{e}^{-\lambda}}{\sinh (\lambda)}|0\rangle^{(1)} \tag{4.47}
\end{equation*}
$$

The eigenvalues of the nested open boundary Gaudin system can be obtained by applying $\hat{t}_{b}^{(1)}(\lambda)$ to the eigenvector

$$
\begin{equation*}
\phi_{b}^{(1)}=\hat{\mathcal{C}}^{(1)}\left(\mu_{1}^{(1)}\right) \hat{\mathcal{C}}^{(1)}\left(\mu_{2}^{(1)}\right) \cdots \hat{\mathcal{C}}^{(1)}\left(\mu_{m}^{(1)}\right)|0\rangle \tag{4.48}
\end{equation*}
$$

The result is

$$
\begin{array}{r}
\Lambda^{(1)}(\tilde{\lambda})=\frac{\left.\mathrm{e}^{(-\lambda}\right)}{\sinh (\lambda)}+\sum_{i=1}^{n}\left(\operatorname{coth}\left(\lambda+\tilde{\mu}_{i}\right)+\operatorname{coth}\left(\lambda-\mu_{i}\right)\right) \\
\quad-\sum_{l=1}^{m}\left(\operatorname{coth}\left(\lambda+\mu_{l}^{(1)}\right)+\operatorname{coth}\left(\lambda-\mu_{l}^{(1)}\right)\right) \tag{4.49}
\end{array}
$$

where $\mu_{l}^{(1)}$ satisfy the constraints

$$
\begin{align*}
& f_{\gamma}^{(1)}=\sum_{i=1}^{n}\left(\operatorname{coth}\left(\mu_{j}^{(1)}+\mu_{i}\right)+\operatorname{coth}\left(\mu_{j}^{(1)}-\mu_{i}\right)\right) \\
&-2 \sum_{l=1, \neq j}^{m}\left(\operatorname{coth}\left(\mu_{j}^{(1)}+\mu_{l}^{(1)}\right)+\operatorname{coth}\left(\mu_{j}^{(1)}-\mu_{l}^{(1)}\right)\right) \\
&=0 \tag{4.50}
\end{align*}
$$

Substituting the nested eigenvalue into (4.22), we obtain the Bethe ansatz equations for the boundary $t-J$ Gaudin model

$$
\begin{gather*}
f_{\alpha}^{b}=-\frac{\mathrm{e}^{-\mu_{\alpha}}}{\cosh \left(\mu_{\alpha}\right)}+\sum_{k=1}^{N}\left(\operatorname{coth}\left(\mu_{\alpha}-z_{k}\right)+\operatorname{coth}\left(\mu_{\alpha}+z_{k}\right)\right) \\
-\sum_{\gamma=1}^{m}\left(\operatorname{coth}\left(\mu_{\alpha}-\mu_{\gamma}^{(1)}\right)+\operatorname{coth}\left(\mu_{\alpha}+\mu_{\gamma}^{(1)}\right)\right) \\
=0 \tag{4.51}
\end{gather*}
$$

5. Super KZ equation in the boundary case

As in the periodic case, the KZ equations are

$$
\begin{equation*}
\nabla_{j} \Psi=0 \quad \nabla_{j}=\kappa \frac{\partial}{\partial z_{j}}-H_{j}^{b} \quad j=1,2, \ldots, N \tag{5.1}
\end{equation*}
$$

but now H_{j}^{b} is the Hamiltonian of the boundary $t-J$ Gaudin model. We make the transformation

$$
\begin{aligned}
& H_{j} \rightarrow H_{j}-2 / \sinh \left(2 z_{j}\right)+2 \sum_{k=1, \neq j}^{N}\left[\operatorname{coth}\left(z_{j}+z_{k}\right)+\operatorname{coth}\left(z_{j}-z_{k}\right)\right] \\
& E_{j}^{b} \rightarrow E_{j}^{b}-2 / \sinh \left(2 z_{j}\right)+2 \sum_{k=1, \neq j}^{N}\left[\operatorname{coth}\left(z_{j}+z_{k}\right)+\operatorname{coth}\left(z_{j}-z_{k}\right)\right] \\
&=\sum_{\alpha=1}^{n}\left[\operatorname{coth}\left(z_{j}+\mu_{\alpha}\right)+\operatorname{coth}\left(z_{j}-\mu_{\alpha}\right)\right]
\end{aligned}
$$

This transformation leaves invariant the form of the off-shell Bethe ansatz equations.
To construct $\Psi(z)$, we introduce a hypergeometric function $\chi(z, \mu)$ which satisfies the following equations

$$
\begin{equation*}
\kappa \frac{\partial}{\partial z_{j}} \chi=E_{j}^{b} \chi \quad \kappa \frac{\partial}{\partial \mu_{\alpha}} \chi=f_{\alpha}^{b} \chi \tag{5.2}
\end{equation*}
$$

and the constraint $f_{\gamma}^{b^{(1)}}=0$. Solving these two equations, one gets

$$
\begin{align*}
\chi(z, \mu)=\prod_{\alpha=1}^{n}(1 & \left.+\mathrm{e}^{-2 \mu_{\alpha}}\right)^{1 / \kappa} \prod_{\alpha=1}^{n}\left[\sinh \left(\mu_{\alpha}-\mu_{\gamma}^{(1)}\right) \sinh \left(\mu_{\alpha}-\mu_{\gamma}^{(1)}\right)\right]^{-1 / \kappa} \\
& \times \prod_{\alpha=1}^{n} \prod_{j=1}^{N}\left[\sinh \left(z_{j}+\mu_{\alpha}\right) \sinh \left(z_{j}-\mu_{\alpha}\right)\right]^{1 / \kappa} \tag{5.3}
\end{align*}
$$

where $\mu_{\gamma}^{(1)}$ satisfies the nested Bethe ansatz equation $f_{\gamma}^{b^{(1)}}=0$. With the help of $\chi(z, \mu)$, the function $\Psi(z)$ is given by

$$
\begin{equation*}
\Psi(z)=\oint_{C} \cdots \oint_{C} \mathrm{~d} \mu_{1} \cdots \mathrm{~d} \mu_{M} \chi(t, z) \phi(t, z) \tag{5.4}
\end{equation*}
$$

where the integration path C is a closed contour in the Riemann surface such that the integrand resumes its initial value after t_{α} has described it. Substituting the expressions of ∇_{j} and $\Psi(z)$ into (3.11), we can show that the KZ equation is satisfied. The proof is as follows

$$
\begin{align*}
\kappa \frac{\partial}{\partial z_{j}} \Psi(z)= & \oint_{C} \cdots \oint_{C} \mathrm{~d} \mu_{1} \cdots \mathrm{~d} \mu_{M}\left(\kappa \frac{\partial \chi}{\partial z_{j}} \phi+\kappa \chi \frac{\partial \phi}{\partial z_{j}}\right) \\
= & \oint_{C} \cdots \oint_{C} \mathrm{~d} t_{1} \cdots \mathrm{~d} \mu_{M}\left(\chi E_{j}^{b} \phi+\kappa \chi \frac{\partial \phi}{\partial z_{j}}\right) \\
= & \oint_{C} \cdots \oint_{C} \mathrm{~d} \mu_{1} \cdots \mathrm{~d} \mu_{M}\left[\chi H_{j}^{b} \phi+\chi \sum_{\alpha=1}^{M} W\left(\mu_{\alpha}, z_{j}\right) f_{\alpha} E_{j}^{-}\left(d_{\alpha}\right) \phi_{\alpha}^{b}\right. \\
& \left.+\kappa \chi \sum_{\alpha} \frac{\partial}{\partial \mu_{\alpha}}\left(W\left(\mu_{\alpha}, z_{j}\right) \phi_{\alpha}^{b} E_{j}^{-}\left(d_{\alpha}\right)\right)\right] \\
= & \oint_{C} \cdots \oint_{C} \mathrm{~d} \mu_{1} \cdots \mathrm{~d} \mu_{M}\left[\chi H_{j}^{b} \phi+\kappa \sum_{\alpha} \frac{\partial}{\partial \mu_{\alpha}}\left(\chi W\left(\mu_{\alpha}, z_{j}\right) \phi_{\alpha}^{b} E_{j}^{-}\left(d_{\alpha}\right)\right)\right] \\
= & H_{j}^{b} \Psi \tag{5.5}
\end{align*}
$$

where

$$
W\left(\mu_{\alpha}, z\right)=\frac{(-1)^{\alpha-1} 2 \cosh \left(z_{j}\right) \sinh \left(\mu_{\alpha}\right)}{\sinh \left(\mu_{\alpha}+z_{j}\right) \sinh \left(\mu_{\alpha}-z_{j}\right)}
$$

Acknowledgment

This work has been financially supported by the Australian Research Council.

Note added. Boundary $t-J$ Gaudin model Hamiltonians have also been studied independently in [25, 26].

References

[1] Gaudin M 1976 J. Phys. (Paris) 371087
[2] Seiberg N and Witten E 1994 Nucl. Phys. B 42619
[3] Braden H, Marshakov A, Mirohov A and Morozov A 1999 The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory Preprint hep-th/9902205
[4] Amico L, Falci G and Fazio R 2001 J. Phys. A: Math. Gen. 346425
[5] Zhou H, Links J, McKenzie R and Gould M D 2002 Phys. Rev. B 65060502
[6] Delft J V and Poghossian R 2001 Preprint cond-mat/0106405
[7] Sklyanin E K 1989 J. Sov. Math. 472473
[8] Brzeinski T and Macfarlane A J 1994 J. Math. Phys. 353261
[9] Sklyanin E K and Takebe T 1996 Phys. Lett. A 219217
[10] Sklyanin E K 1999 Lett. Math. Phys. 47275
[11] Essler F H L and Korepin V E 1992 Phys. Rev. 469146
[12] Foerster A and Karowski M 1993 Nucl. Phys. B 396611
[13] Foerster A and Karowski M 1993 Nucl. Phys. B 408512
[14] Fan H, Wadati M and Wang X-M 2000 Phys. Rev. B 613450
[15] Quella T 2000 J. Phys. A: Math. Gen. 332579
[16] Cao J-P, Hou B-Y and Yue R-H 2001 J. Phys. A: Math. Gen. 343761
[17] Knizhnik V G and Zamolodchikov A B 1984 Nucl. Phys. B 24783
[18] Babujian H M 1994 J. Phys. A: Math. Gen. 266981
[19] Hikami K 1994 J. Phys. A: Math. Gen. 27 L541
[20] Hasegawa T, Hikami K and Wadati M 1994 J. Phys. Soc. Japan 632895
[21] Feigin B, Frenkel E and Reshetikhin N 1994 Commun. Math. Phys. 16627
[22] Hikami K 1995 J. Phys. A: Math. Gen. 284997
[23] Perk J H and Shultz C L 1981 Phys. Lett. A 843759
[24] Hikami K, Kulish P P and Wadati M 1992 J. Phys. Soc. Japan 613071
[25] Zhou H Q On the construction of integrable Gaudin models with a boundary at press
[26] Gould M D, Yang W L, Zhang Y Z and Zhao S Y On the construction of Gaudin models with boundaries at press

